HIV-1 conserved-element vaccines: relationship between sequence conservation and replicative capacity.

نویسندگان

  • Morgane Rolland
  • Siriphan Manocheewa
  • J Victor Swain
  • Erinn C Lanxon-Cookson
  • Moon Kim
  • Dylan H Westfall
  • Brendan B Larsen
  • Peter B Gilbert
  • James I Mullins
چکیده

To overcome the problem of HIV-1 variability, candidate vaccine antigens have been designed to be composed of conserved elements of the HIV-1 proteome. Such candidate vaccines could be improved with a better understanding of both HIV-1 evolutionary constraints and the fitness cost of specific mutations. We evaluated the in vitro fitness cost of 23 mutations engineered in the HIV-1 subtype B Gag-p24 Center-of-Tree (COT) protein through fitness competition assays. While some mutations at conserved sites exacted a high fitness cost, as expected under the assumption that the most conserved residue confers the highest fitness, there was no overall strong relationship between sequence conservation and replicative capacity. By comparing sites that have evolved since the beginning of the epidemic to those that have remain unchanged, we found that sites that have evolved over time were more likely to correspond to HLA-associated sites and that their mutation had limited fitness costs. Our data showed no transcendent link between high conservation and high fitness cost, indicating that merely focusing on conserved segments of HIV-1 would not be sufficient for a successful vaccine strategy. Nonetheless, a subset of sites exacted a high fitness cost upon mutation--these sites have been under selective pressure to change since the beginning of the epidemic but have proved virtually nonmutable and could constitute preferred targets for vaccine design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNA secondary structure and squence conservation in C1 region of human immunodeficiency virus type 1 env gene.

We have analyzed amino acid, nucleotide sequence, and RNA secondary structure variability in the env gene of human immunodeficiency virus type (HIV-1). In applying algorithms for computing optimal RNA-folding patterns to a nonredundant data set of 178 env nucleotide sequences, we found a conserved RNA stem-loop structure in the first conserved (C1) region of the env gene. This detailed examinat...

متن کامل

Superior Control of HIV-1 Replication by CD8+ T Cells Targeting Conserved Epitopes: Implications for HIV Vaccine Design

A successful HIV vaccine will likely induce both humoral and cell-mediated immunity, however, the enormous diversity of HIV has hampered the development of a vaccine that effectively elicits both arms of the adaptive immune response. To tackle the problem of viral diversity, T cell-based vaccine approaches have focused on two main strategies (i) increasing the breadth of vaccine-induced respons...

متن کامل

Intersubtype differences in the effect of a rare p24 gag mutation on HIV-1 replicative fitness.

Certain immune-driven mutations in HIV-1, such as those arising in p24(Gag), decrease viral replicative capacity. However, the intersubtype differences in the replicative consequences of such mutations have not been explored. In HIV-1 subtype B, the p24(Gag) M250I mutation is a rare variant (0.6%) that is enriched among elite controllers (7.2%) (P = 0.0005) and appears to be a rare escape varia...

متن کامل

HIV RNA dimerisation interference by antisense oligonucleotides targeted to the 5' UTR structural elements.

The HIV-1 genome consists of two identical RNA molecules non-covalently linked by their 5' unstranslatable regions (5' UTR). The high level of sequence and structural conservation of this region correlates with its important functional involvement in the viral cycle, making it an attractive target for antiviral treatments based on antisense technology. Ten unmodified DNA antisense oligonucleoti...

متن کامل

Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization

Replication-competent adenovirus (rcAd)-based vaccine vectors may theoretically provide immunological advantages over replication-incompetent Ad vectors, but they also raise additional potential clinical and regulatory issues. We produced replication-competent Ad serotype 26 (rcAd26) vectors by adding the E1 region back into a replication-incompetent Ad26 vector backbone with the E3 or E3/E4 re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 87 10  شماره 

صفحات  -

تاریخ انتشار 2013